• adress
  • قزوین، شهرصنعتی البرز
  • رو به روی گمرک

  • call
  • +98 28 32 22 8072 
  • +98 28 32 23 11 26 
    info@novinbokhar.com
  • https://telegram.me/novinbokhar1

انقلاب صنعتی ، دیگ بخار و موتور بخار

انقلاب صنعتی

«انقلاب صنعتی» (Industrial Revolution) منجر به تغییر بنیادین شرایط زندگی در بازه‌ی زمانی اواخر قرن هیجدهم تا اوایل قرن نوزدهم در بریتانیا، ایالات متحده و غرب اروپا گردید. اساس این تغییرات شگرف را جهش فناوری در صنعت می‌دانند.

تحولات عظیمی در این دوره در حوزه‌ی فناوری، تعاملات اجتماعی، پزشکی، اقتصاد، آموزش و فرهنگ روی داد؛ ماشین‌ها شروع به کار به جای نیروی انسانی کردند. منابعی مانند چوب جای خود را به منابع جدید مانند آهن و زغال‌سنگ دادند. منبع حرکتی جدیدی به جز نیروی آب برای گرداندن تجهیزات دوار دیده به جهان گشود. به طور خلاصه روش‌های جدید منجر به خروج از دوره‌ی کشاورزی و ورود به دوره‌ی سرمایه‌گذاری گشت.

انقلاب صنعتی نقطه‌ی عطفی در زندگی بشریت شد و اهمیتی مانند اختراع کشاورزی یا تأسیس اولین شهرها پیدا کرد تا تمام جوانب زندگی را تغییر دهد. البته مانند تغییرات سیستمی بنیادین دیگر، عوامل مؤثری در این تحول دخیل بوده‌اند که توسعه‌ی صنعت از دیگر عوامل اهمیت بیشتری دارد.

اولین انقلاب صنعتی دست به دست دومین انقلاب صنعتی در سال ۱۸۵۰ داد. در این سال توسعه‌ی اقتصادی با سرعت بیشتری به دلیل توسعه‌ی موتور بخار در کشتی‌ها و لوکوموتیو‌ها شروع به حرکت کرد. در ادامه و در قرن نوزدهم با استفاده از موتور درون سوز و تولید برق این شتاب هرچه بیشتر شد.

موج اختراعات صنعتی و به تبع آن‌ها تغییرات اجتماعی در زندگی انسا‌ن‌ها در قرن بیستم نیز ادامه پیدا کرد. این انقلاب البته در کشورهای مختلف از نظر توسعه‌ی صنعتی در مراحل مختلفی قرار دارد.

در حالی که انقلاب صنعتی منجر به افزایش شدید «تولید ناخالص ملی» (gross domestic product) گردید، توزیع ثروت به همین اندازه بین تمام اقشار صورت نگرفت. با این حال این تحولات باعث شد تعداد بسیار بیشتری نسبت به گذشته از سطح زندگی عادی برخوردار گردند.

جوامع مبتنی بر کشاورزی سرعت رشد کمتر و جوامع باثبات‌تری داشتند. اما جامعه‌ی جدید تشکیل‌شده با درصد بالای طبقه‌ی متوسط شهری همیشه آبستن تغییرات سهمگین بوده است.

پیشینه‌ی تاریخی

انقلاب صنعتی اوایل قرن هفدهم در بریتانیا شروع شد. «قانون اتحاد» (The Act of Union) که انگلستان و اسکاتلند را به همدیگر پیوند داد، منجر به فراهم شدن دوره‌‌ای از صلح داخلی و ایجاد بازاری بدون مانع گشت. بریتانیا در آن زمان از نظام بانکی در حال توسعه، بستر قانونی برای تلفیق شرکت‌ها، نظام قهریه‌ی پشتیبان قانون و یک سیستم حمل‌ونقل رو به رشد بهره‌مند بود.

در انتهای نیمه‌ی دوم قرن هجدهم، فرایند تبدیل اقتصاد مبتنی بر نیروی کار به اقتصادی مبتنی بر صنعت و ماشین‌آلات شروع شد. موتور محرک این تغییر را می‌توان مکانیزه‌ شدن صنعت نساجی، توسعه‌ی فناوری‌های مربوط به صنعت آهن و افزایش بهره‌برداری از زغا‌ل‌سنگ نامید.

industrial reveloution

کانال‌های تجاری، جاده‌ها و ریل‌های قطار منجر به افزایش حجم تجارت شد. نیروی بخار ظرفیت تولید صنعتی را به شدت افزایش داد. توسعه‌ی ماشین‌ها در دو دهه‌ی ابتدایی قرن نوزدهم، به تولید دستگاه‌های تولیدی صنعتی سرعت بخشید. این اثرات از اروپای غربی و امریکای شمالی راه خود را به سراسر جهان باز کردند. استفاده از دیگ بخار به عنوان قلب موتورهای بخار روز به روز افزون شد و در کشتی ها و قطارها نیز استفاده شد و صنعت را متحول نمود.

فهرستی از اختراعات مهم

شروع انقلاب صنعتی با فهرستی از اختراعات در نیمه‌ی دوم قرن نوزدهم تقویت شد که در زیر به آن‌ها اشاره می‌گردد.

صنایع نساجی

بعد از اختراع دستگاه ریسندگی با کمک قدرت آب توسط «Richard Arkwright» (ریچارد آرکرایت) و پیشرفت فناوری‌های مرتبط، کارخانه‌های سنگین نساجی راه افتاد.

نیروی بخار

موتور تقویت‌شده‌ی بخار توسط «جیمز وات» (James Watt) در ابتدا برای پمپ کردن پساب معدن‌ها استفاده می‌شد. اما در ادامه ماشین‌های صنعتی نیز به این فناوری مجهز شدند. این جهش منجر به ایجاد کارخانه‌های نیمه خودکار با ظرفیت تولید غیرقابل باور در مقابل کارگاه‌های مبتنی بر نیروی کار شد. موتور بخار شامل یک دیگ بخار که نیروی پیشرانه جهت حرکت پیستون های موتور بخار را تامین میکرده.

صنعت فولاد

بعد از مدت‌ها در صنایع فولاد از «کک» (coke) به جای زغال چوب استفاده شد. کک یک مادهٔ جامد پُر کربن است که بر اثر تقطیر آهسته‌ی زغال‌سنگ تشکیل می‌گردد. از این ماده با عیار کربن ۸۰ تا ۹۰ به‌عنوان سوخت استفاده و یک جایگزین برای زغال‌سنگ محسوب می‌شود. استفاده از این روش بازده تولید را به شدت افزایش داد.

این سه مرحله در واقع سه‌پایه‌ی اصلی جهش و موتور محرکه‌ی انقلاب صنعتی محسوب می‌شوند. البته این موضوع اهمیت دیگر اختراعات کوچک اما مهم مخصوصا در حوزه‌ی نساجی را کم‌رنگ نمی‌کند.

در ادامه اختراعاتی مانند «دستگاه‌ ریسندگی» (power loom) و موتور بخار فشار بالا توسط «Richard Trevithick» در جان‌بخشی به انقلاب صنعتی در بریتانیا مهم بودند. موتور بخار این امکان را به سرمایه‌گذاران داد تا کارخانه‌ها را نزدیک به منابع مورد نیاز بنا کنند. تا قبل از آن کارخانه برای استفاده از نیروی آب باید در کنار رودخانه بنا می‌شد.

این کارخانه‌‌ها به عنوان الگوهای مدرن سازمان‌دهی نیروی کار شناخته شد. برای مثال به مجتمع‌های بزرگ ریسندگی در کنار یکدیگر در شهر منچستر «Cottonopolis» به معنای «کتان‌شهر» می‌گفتند. خطوط مونتاژ چه در این کارخانه‌ها و چه در صنایع دیگر بهینه شد. این فرایند با دادن یک کار ساده و تکراری به یک کارگر میسر گشت. برای نمونه کارگر اول تنها یک پیچ را می‌بست و قطعه روی نوار نقاله برای کارگر بعدی ارسال می‌شد تا کار مخصوص به خود را انجام دهد.industrial reveloution

انتقال دانش

دانش فناوری‌های جدید با روش‌های مختلفی به کارخانه‌های مختلف وارد شد. کارگر آموزش‌دیده در یک صنعت به دلیل دریافت پیشنهاد دستمزد بالاتر به کارخانه‌ی دیگری می‌رفت. در ادامه‌ تور‌های آموزشی یا مطالعاتی مرسوم شد. در طول انقلاب صنعتی و حتی یک قرن قبل از آن، تمام کشورهای اروپایی و آمریکایی در این تورها شرکت‌ می‌کردند.

در کشورهایی مانند سوئد و فرانسه افرادی مخصوص این کار تربیت می‌شدند. در کشورهایی مانند بریتانیا و امریکا بخش خصوصی جهت تقویت خط تولید به این کار دست می‌زدند. دست‌نوشته‌هایی از خاطرات چنین تورهایی به منبع بزرگی از دانش تبدیل شده است.

یکی دیگر از روش‌های نشر دانش و فناوری شبکه‌ای غیررسمی از جلسات فلسفی مانند «Lunar Society of Birmingham» بود. در این جلسات اعضا در مورد «فلسفه‌ی طبیعی» (natural philosophy) مانند دانش و کاربرد آن در صنایع صحبت می‌کردند.

دیگر گروه‌های این‌چنینی نیز هزاران جلد کتاب در مورد انتقال دانش و پیشرفت چاپ کردند. برای نمونه «Royal Society of Arts» هر ساله تصاویر و توضیحاتی فنی در مورد اختراعات جدید چاپ می‌کرد.

مجلات دیگری نیز در باب تشریح فناوری چاپ می‌شد. دایره‌المعارف‌هایی مانند «Harris’s Lexicon technicum» و «Dr. Abraham Rees’s Cyclopaedia» از این دست بودند. Cyclopaedia با تصاویر زیبا و دقیق اطلاعات کاملی را از وضعیت دانش و فناوری در نیمه‌ی اول انقلاب صنعتی به نمایش می‌گذارد. مجلات دوره‌ای نیز در رابطه با صنایع و فناوری در دهه‌ی آخر قرن نوزدهم رونق پیدا کردند.

industrial reveloution

توسعه‌ی فناوری در بریتانیا

در این بخش به پایه‌ها‌ی اصلی توسعه‌ی فناوری در بریتانیا می‌پردازیم.

صنایع نساجی

در ابتدای قرن هجدهم تولیدات نساجی بر اساس استفاده از پشم و دستگاه‌های ریسندگی انفرادی بنا شده بود. هر نفر کارگر دستگاهی مخصوص به خود داشت که ریسندگی و دوزندگی را انجام می‌داد.

به جز پشم، از «فلکس یا گیاه کتان» (Flax) و پنبه برای تولید پارچه‌‌‌های ظریف و نرم استفاده می‌شد. البته به دلیل کم بودن محصولات مرغوب در خروجی نهایی، این روش نیز هزینه بسیاری در پی داشت. در زیر تصویری از فلکس مشاهده می‌کنید.

industrial reveloution

استفاده از تجهیزات ریسندگی غیر صنعتی ظرفیت تولید را به شدت پایین نگاه می‌داشت. تا این که با اختراعات جدید، محصولات نساجی به اولین محصول صادراتی از بریتانیا تبدیل گشت. کشور هند نیز به عنوان محلی برای تأمین پنبه انتخاب شد.

متالوژی

مهم‌ترین تحول در صنعت فلزات یا متالوژی تغییر سوخت‌های آلی مانند چوب به سوخت‌های فسیلی مانند زغال‌سنگ بوده است. البته بیشتر این فرایند به دلیل استفاده «Sir Clement Clerke» و دیگران از سال ۱۶۷۸ به بعد از کوره‌ای به نام «cupolas» از نوع «کوره‌های» (reverberatory furnace) با مصرف زغال‌سنگ است.

این کوره‌ها با توجه به ایجاد شعله‌هایی حاوی کربن منواکسید، منجر به کاهش میزان اکسیژن در فلز نهایی می‌شدند. همچنین ناخالصی‌هایی مانند گوگرد زغال‌سنگ به این شیوه به فلز منتقل نمی‌شد. این فناوری از سال ۱۶۷۸ برای سرب و از سال ۱۶۸۷ برای مس مورد استفاده قرار می‌گرفت. در این کوره‌‌ها تنها گاز حاصل از احتراق با مواد موجود در کوره تماس دارد؛ اما در نمونه‌‌ها قبلی سوخت نیز با فلزات تماس پیدا می‌کرد. در شکل زیر چنین کوره‌ای را مشاهده می‌‌کنید.

industrial reveloution

«Abraham Darby» در ادامه فناوری «کوره بلند» (blast furnaces) را در سال ۱۷۰۹ که با کک کار می‌کرد، معرفی نمود.

این تجهیز کوره‌ای عمودی است که در کارخانه‌های ذوب فلز برای استخراج فلز، به ویژه آهن، از سنگ معدن استفاده می‌شود. کوره بلند را به عنوان اصیل‌ترین روش جداسازی آهن از سنگ آهن می‌شناسند. به همراه سنگ آهن، کک و آگلومره هم داخل کوره بلند ریخته می‌شود. در کوره بلند سوخت جامد، معمولا کک همراه با جریان دمشی هوا می‌سوزد و کانی‌ها را ذوب می‌کند. در حال حاضر بزرگ‌ترین کوره بلند ایران به حجم ۲۰۰۰ متر مکعب و در ذوب آهن اصفهان احداث شده است.

به هر حال این اختراع تنها برای تولید «چدن» (cast iron) که در محصولاتی مانند کتری و ظروف فلزی مورد استفاده قرار می‌گیرد، مناسب بود. Abraham Darby البته این مزیت را نسبت به رقیبان داشت که ظروف تولیدی او از دیگران سبک‌تر، نازک‌تر و ارزان‌تر تمام می‌شد.

تا آن زمان از این چدن کمتر برای تولید میل‌گرد استفاده می‌شد تا این که پسرش «Abraham Darby II» کارخانه‌ی ذوب‌آهن خود را راه‌ انداخت.

از آنجا که هر روز تولید آهن با آمدن فناوری‌های جدید، ارزان‌تر و فراوان‌تر می‌شد، ساختمان‌های فلزی نیز رونق پیدا کرد. اوج این فرایند را در ساخت پل فلزی در سال ۱۷۷۸ توسط «Abraham Darby III» می‌بینیم.

industrial reveloution

در سال ۱۷۴۰، با روش ابداعی «Benjamin Huntsman»، فولاد به روشی ارزان تولید گشت. تأمین ارزان چدن و فولاد منجر به تولید مقرون‌ به صرفه‌ی «دیگ‌های بخار» (boilers) و موتور بخار شد. این قدم جان تازه‌ای به صنعت رو به رشد بریتانیا بخشید.

معدن

استخراج زغال‌سنگ در بریتانیا خیلی زود مخصوصا در «South Wales» شروع شد. قبل از اختراع و تقویت موتور بخار،‌ عمق معدن‌ها به دلیل عدم امکان استخراج مناسب آب‌های زیرزمینی کم بود. بعد از معرفی موتور بخار امکان استخراج آب و افزایش عمق معادن فراهم شد. البته این فرایند قبل از شروع انقلاب صنعتی آغاز شده بود اما با تلاش‌های جیمز وات برای تولید موتور بخار با بازده بالا، سرعت بیشتری به خود گرفت. حالا هزینه‌ی سوخت کاهش پیدا می‌کرد و سود معدنکاری افزایش می‌یافت.

نیروی بخار

توسعه‌ی «موتور بخار درجا» (stationary steam engine) یکی از قدم‌های حیاتی و اولیه انقلاب صنعتی بود. با این حال در اکثر دوره‌ی این تحول، کارخانه‌ها از نیروی آب، باد، انسان و حیواناتی مانند اسب استفاده می‌کردند.

کاربرد صنعتی نیروی بخار با کار «Thomas Savery» در سال ۱۶۹۸ شروع شد. او اولین موتور از این دست را به نام «دوست معدنچی» (Miner’s Friend) ساخت و به ثبت رساند. وجه تسمیه این نام استفاده از این موتور برای پمپ آب از معادن بود.

این ماشین از بخار با فشار ۸ -۱۰ اتمسفر – البته بدون پیستون و سیلندر – مستقیما برای فشار به سطح آب در یک سیلندر استفاده می‌کرد. به این شیوه آب از لوله خارج می‌شد. برای مکیدن آب به درون لوله نیز بخار میعان شده مورد بهره‌برداری قرار می‌گرفت. توان این پمپ در حدود یک «اسب بخار» (horse power) بود.

از این پمپ در تعداد محدودی از معادن استفاده شد. دلیل عدم استفاده این پمپ، خطر انفجار دیگ بخار و محدودیت ارتفاع بالا بردن آب یا «هد» (head) پمپ بود.

اولین مدل موفق را یک موتور اتمسفری با بازده پایین می‌دانند که توسط «توماس نیوکومن» (Thomas Newcomen) در سال ۱۷۱۲ اختراع شد. در موتور او از یک پیستون و سیلندر و بخاری با فشار کمی بالاتر از اتمسفر استفاده می‌شد. بخار کم‌فشار هنگامی که با عبور آب سرد میعان می‌شد، یک «خلأ نسبی» (partial vacuum) در سیلندر می‌ساخت. خلأ ایجاد شده پیستون را درون سیلندر می‌مکید. انجام مداوم این عملیات می‌توانست باعث کارکرد یک پمپ شود؛ گرچه این موتور توان به حرکت درآوردن یک چرخ را نداشت.

از این موتورها در مقیاس وسیع برای کشیدن آب معادن در بریتانیا استفاده شد. موتور بالای چاه و پمپ را درون چاه کار می‌گذاشتند و برای انتقال توان از یک میله بلند استفاده می‌شد. البته چنین تجهیزی نیاز به سرمایه‌ اولیه بالایی برای ساخت داشت اما برای اولین بار می‌توانست توانی معادل ۵ اسب بخار تولید نماید.

industrial engine

این ماشین‌ها به معدنچی‌ها اجازه می‌دادند تا عمق بیشتری به دل زمین نفوذ کنند. با این‌که مصرف سوخت این موتورها بالا بود، اختراع نیوکومن به کار خود تا اوایل قرن نوزدهم ادامه داد. دلیل این موفقیت کم بودن میزان خرابی و راحتی بهره‌برداری از آن‌ها بود.

تا سال ۱۷۲۹ که نیوکومن درگذشت، پای موتورهای او به فرانسه، آلمان، اتریش، مجارستان و سوئد باز شده بود. تعداد ۱۱۰ عدد از این اختراع تا سال ۱۷۳۳ که حق انحصاری ساخت نیوکومن منقضی می‌شد، ساخته شد. بعد از آن تا سال ۱۸۰۰ توسط شرکت «Rolt and Allen 145» تعداد ۱۴۵۴ موتور دیگر به این شیوه تولید گشت.

اساس کار نیوکومن تا سال ۱۷۶۹ که «جیمز وات» (James Watt) موتور بخاری را با نام خود ساخت، دست‌نخورده باقی ماند. موتور وات به میزان ۷۵ درصد در مصرف زغال‌سنگ نسبت به نوع قبلی خود صرفه‌جویی داشت. وات موتور بخار خود را توسعه داد تا به فناوری حرکت گردان یا چرخشی مناسب برای استفاده در کارخانه‌ها تبدیل گردد. این فناوری به صنعت اجازه داد تا جایی غیر از کنار رودخانه‌ها بنا شوند و سرعت انقلاب صنعتی را افزایش داد.

steam engine
این موتورهای از نظر اقتصادی به شکل چشم‌گیری موفق بودند. تا سال ۱۸۰۰، کارخانه‌ی «Boulton & Watt» تعداد ۴۹۶ موتور تولید کرد که از این تعداد، ۱۶۴ عدد در پمپ، ۲۴ عدد در کوره‌بلند‌ها و ۳۰۸ عدد در کارخانه‌‌های ریسندگی مورد استفاده قرار گرفت. اکثر این موتورها توانی بین ۵ – ۱۰ اسب بخار تولید می‌کردند.

توسعه‌ی «ابزارهای ماشین‌کاری» (machine tools) مانند «دستگاه تراش» (lathe)، سرعت بیشتری به پیشرفت موتورهای بخار و دیگر قطعات صنعتی بخشید.

حدود سال ۱۸۰۰، «ریچارد تریویتیک» (Richard Trevithick) موتورهایی با فشار بخار بالا طراحی کرد. این اختراع از نمونه‌های قبلی بسیار قدرتمندتر بود؛ به همین دلیل امکان داشت تا با طراحی در اندازه‌ای کوچک، در کاربردهای حوزه‌ی حمل‌ونقل مورد استفاده قرار گیرد. پیشرفت‌های پی‌درپی باعث شد تا این فناوری به تدریج کوچک‌تر، سریع‌تر و قوی‌تر شود.

موتور بخار به عنوان مهم‌ترین منبع توان تا قرن بیستم شناخته می‌شد؛ تا جایی که با طراحی موتور الکتریکی و موتور درون‌سوز، در بخش موتورهای رفت‌وبرگشتی قافیه را به رقیبان خود باخت. با این وجود هنوز توربین بخار سرآمد فناوری‌های مورد استفاده در تولید برق است.

مواد شیمیایی

تولید مواد شیمیایی در مقیاس صنعتی یکی دیگر از پایه‌های مهم انقلاب صنعتی به شمار می‌رود. اولین ماده‌ی شیمیایی تولید شده در مقیاس بزرگ «اسید سولفوریک» (sulphuric acid) بود. این اسید در فرایندی با نام «فرایند محفظه‌ی سربی» (lead chamber process) توسط «John Roebuck» – اولین شریک جیمز وات – در سال ۱۷۴۶ تولید شد. مقیاس تولید با تغییر رآکتورهای گران شیشه‌ای با ظروف سربی به شدت بالا رفت.

بعد از تولید اسید در مقیاس بالا، نیاز به تولید یک ماده شیمیایی با خاصیت بازی احساس شد. در سال ۱۷۹۱، «Nicolas Leblanc» روشی برای تولید «سدیم کربنات» (sodium carbonate) یا «سودا اش» معرفی کرد. البته فرایند پیشنهادی در هر مرحله میزان زیادی پس‌ماند آلوده تولید می‌نمود.

فرایند با واکنش بین سولفوریک اسید و سدیم کلرید یا نمک خوراکی و تولید سدیم سولفات و هیدروکلریک اسید – یکی از پس‌ماند‌های آلوده – شروع می‌شد. در مرحله‌ی بعدی سدیم سولفات را با سنگ آهک (سدیم کربنات) و زغال‌سنگ گرم می‌کردند تا ترکیبی شامل سدیم کربنات و کلسیم سولفید تولید شود. در این مرحله آب اضافه می‌شد تا سدیم کربنات را با حل کردن در خود، از کلسیم سولفید – پس‌ماند دیگر – جدا کند.

گرچه این فرایند در آن وهله بسیار آلوده بود، سود سرشاری نسبت به روش‌های قدیمی داشت. قبل از این روش با سوزاندن درختانی مانند «باری‌ها» (barilla) یا «کتانجک» (kelp) این ماده را به دست می‌آوردند.

industrial reveloution

تولید کلسیم هیپوکلریت به عنوان یکی از «پودرهای سفید کننده» (bleaching powder) توسط شیمی‌دان اسکاتلندی «Charles Tennant» در سال ۱۸۰۰ بر اساس کارهای علمی شیمیدان فرانسوی «Charles Tennant» جهشی عظیم در صنعت نساجی پدید آورد. در روش‌های قدیمی پارچه را بعد از آغشته کردن در محلول بازی یا شیر ترش، روزها یا ماه‌ها در معرض خورشید قرار می‌دادند تا سفید شود. کارخانه‌ی Tennant به بزرگ‌ترین کارخانه‌ی تولید مواد شیمیایی تبدیل شد.

در سال ۱۸۲۴، «Joseph Aspdin»، بنا و در ادامه ساختمان‌ساز بریتانیایی اختراع روش تولید سیمان را به نام خود ثبت کرد. اختراعی که صنعت ساختمان را دگرگون نمود. فرایند با «سینترینگ یا تف‌جوشی» (sintering) مخلوطی از خاک رس و سنگ آهک در دمایی حدود ۱۴۰۰ درجه شروع می‌شود. هنگامی که ذرات پودر متراکم شده تا دماهای بیش از نصف دمای ذوب مطلق گرم شوند، به یکدیگر خواهند چسبید. این پدیده تف جوشی نامیده می‌شود. در ادامه این مخلوط را به پودر تبدیل می‌کنند. در مرحله‌ی آخر سیمان با شن، سنگ و آب مخلوط می‌شود تا «بتن» (concrete) تولید گردد.

ابزار ماشین‌کاری

پای انقلاب صنعتی بدون توسعه‌ی چنین ابزارهایی لنگ می‌زد؛ چرا که این‌ها منجر به تولید ماشین‌های صنعتی می‌شدند. توسعه‌ی ابزارهای ماشین‌کاری به قرن هجدهم و سازندگان ساعت‌های دقیق یا دانشمندانی بر می‌گردد که سعی داشتند با تولید تجهیزات کوچک، مکانیسم‌های شیمیایی را بررسی کنند. کارخانه‌داران صنعت نساجی اولین قدم را در استفاده از چنین ابزارهایی برداشتند.

یکی از نمونه‌های مناسب برای نحوه‌ی تحول صنعت با ابزارهای ماشین‌کاری در سال ۱۸۳۰ در شهر بیرمنگام انگلستان به وقوع پیوست. ماشین اختراع شده توسط «William Joseph Gillott» به همراه «William Mitchell» و «James Stephen» توانست به شیوه‌ای ارزان و کارآمد نوک خودنویس تولید کند. قبل از آن این کار بسیار گران و سخت بود.

در ابتدا ماشین‌ها توسط نجاران و آهنگران ساخته می‌شد. همچنین به دلیل سختی کار با آهن و نبود ابزارهای ماشین‌کاری، استفاده از فلزات اصلا رایج نبود. مشکلات قالب‌های چوبی از جمله تغییر شکل با دما و رطوبت نیز مانع از استفاده کارآمد و طولانی می‌گشت. با رشد انقلاب صنعتی ماشین‌ها با قالب‌های فلزی کم‌کم جای خود را پیدا کردند. با این حال نیاز به ابزارهای ماشین‌کاری برای ساخت اقتصادی این قطعات احساس می‌شد. قبل از توسعه‌ی این ابزار‌ها از چکش، اره آهن‌بر، قلم و .. استفاده می‌کردند. گرچه امکان تولید قطعات کوچک با این ابزارها وجود داشت اما تولید ماشین‌های بزرگ بسیار سخت و گران تمام می‌شد.

industrial reveloution

تجهیزات سوراخ‌کاری، فرزکاری و صفحه‌ی تراش از اولین ابزارهای مورد نیاز در اوایل قرن نوزدهم بودند که مورد استفاده قرار گرفتند. تولیدات نظامی مثل همیشه نقش مؤثری در توسعه‌ی این ابزارها داشتند.

لامپ‌های گازی

یکی دیگر از قدم‌های مهم اختراع «لامپ‌های گازسوز یا گازی» (gas lighting) بود. با این‌که در قسمت‌های دیگر جهان کارهای مشابهی انجام می‌شد، معرفی این فناوری در مقیاس بالا را کار «William Murdoch»، یکی از کارمندان شرکت «Boulton and Watt» – از پیش‌گامان تولید موتور بخار – می‌دانند.

این فرایند با «گازی‌سازی» (gasification) زغال‌سنگ در کوره شروع می‌گردد. سپس گاز تولید شده باید خالص شود؛ به این معنی که گوگرد، آمونیوم و هیدروکربن‌های سنگین آن جدا گردد. قدم بعدی توزیع گاز بین مصرف‌کنندگان شهری یا صنعتی است.

industrial reveloution

اولین پالایشگاه‌های گاز به این شکل بین سال‌های ۱۸۱۲ تا ۱۸۲۰ در لندن تأسیس شد. این پالایشگاه‌ها به سرعت به مهم‌ترین مصرف کننده‌ی زغال‌سنگ در بریتانیا تبدیل شدند. لامپ‌های گازی تأثیر شگرفی بر رفتار اجتماعی و تحولات صنعتی داشتند؛ چراکه بعد از این کارگاه‌ها، معادن و نشست‌های اجتماعی می‌توانست تا پاسی از شب یا به شکل شبانه‌روز برقرار باشد. زندگی شهری به شکل نوینی تغییر یافت و خیابان‌های شهر به شکل بی‌سابقه‌ای روشن شد.

حمل‌ و نقل در بریتانیا

در ابتدای انقلاب صنعتی، حمل‌ونقل در رودخانه‌ها یا جاده‌ها انجام می‌شد؛ بارهای سنگین نیز توسط لنج یا کشتی‌های ساحلی صورت می‌گرفت. از مسیر‌های ریلی برای انتقال زغال‌سنگ به رودخانه و در ادامه انتقال به محل مورد نظر استفاده می‌شد و هنوز کانال‌ها احداث نشده بود. از حیوانات برای انتقال بار روی زمین استفاده می‌کردند.

در طول تحولات شگرف صنعتی، حمل‌ونقل بریتانیا نیز دستخوش تغییر شد؛ شبکه‌ای از شاه‌راه‌ها، یک کانال، شبکه‌‌ای آبی و یک شبکه‌ی ریلی شکل گرفت. خوراک کارخانه‌ها و محصولات نهایی حالا ارزان‌تر از همیشه جابه‌جا می‌شد. حمل‌ونقل سریع همچنین منجر به تبادل سریع ایده‌ها و اندیشه‌ها شد.

انقلاب صنعتی در کشورهای دیگر

تحولات چشم‌گیر صنعتی با فاصله‌ی زمانی یا به شکل‌های دیگر در کشورهایی مانند ایالات متحده و ژاپن صورت گرفت. در این قسمت مختصری در این باره می‌خوانید.

ایالات متحده

ایالات متحده مانند بریتانیا در ابتدا از توان آب جاری در رودخانه‌ها برای چرخاندن چرخ صنعت بهره می‌برد؛ به همین دلیل صنعت تنها محدود به شمال کشور – جایی که رودخانه‌های روان زیادی داشت – بود. با این حال مواد خامی مانند پشم از جنوب ایالات متحده به شمال وارد می‌شد. بعد از «جنگ داخلی امریکا» (American Civil War) بود که توان بخار جای آب را گرفت و پای صنعت به تمام کشور رسید.

«ساموئل اسلاتر» (American Civil War) را به عنوان پدر صنعت پنبه می‌شناسند. او بعد از این‌ که در جوانی به عنوان یک کارورز در انگلستان فنون نساجی را فراگرفت، با نادیده گرفتن قانون منع مهاجرت کارگر ماهر، در سال ۱۷۸۹ به نیویورک سفر کرد. اسلاتر چنان پیشرفت کرد که در سال ۱۷۹۳ صاحب ۱۳ کارخانه‌ی نساجی صنعتی بود.

ژاپن

در سال ۱۸۷۱ گروهی از سیاستمداران ژاپنی در ماموریتی معروف به «Iwakura Mission» به اروپا و ایالات متحده سفر کردند تا راه‌ و رسم صنعت را بیاموزند. نتیجه این سفر اتخاذ تدابیری در راستای توسعه‌ی صنعتی بود تا ژاپن از دیگر کشورها عقب نیفتد. «بانک ژاپن» که در سال ۱۸۷۷ تاسیس شد، با استفاده از مبالغ مالیات توانست تاسیس کارخانه‌های نساجی و فولاد را تأمین اعتبار نماید. در همین راستا آموزش تقویت شد و دانش‌آموزان برای تحصیل به غرب فرستاده شدند.

انقلاب صنعتی دوم

نیاز روزافزون به خطوط راه‌آهن منجر به توسعه‌ی روش‌های ارزان تولید انبوه فولاد گشت. تولید انبوه فولاد را به عنوان اولین نشانه‌های ظهور انقلاب صنعتی دوم از ابتدای سال ۱۸۵۰ میلادی می‌شناسند. این انقلاب به آرامی با تولد صنایع شیمیایی، پالایش نفت و توزیع سوخت‌های فسیلی، صنایع الکترونیک رشد کرد. در قرن بیستم انقلاب دوم با توسعه‌ی صنعت خودرو گسترش یافت و در همین سال‌ها پرچم فناوری از بریتانیا به ایالات متحده و آلمان کوچ کرد.

معرفی فناوری نیروگاه‌های برق‌آبی صنعت مرده‌ی – به دلیل عدم برخورداری از معادن زغال‌سنگ – شمال ایتالیا را از سال ۱۸۹۰ احیا کرد. دسترسی روزافزون به منابع نفتی اهمیت وجود زغال‌سنگ را کاست و منجر به افزایش سرعت صنعتی شدن گشت.

انقلابی در زندگی انسانی

اثرات کوتاه‌مدت انقلاب صنعتی بسیار شدید بود. برای نمونه شالوده‌ی خانواده‌هایی که پیش از این با کشاورزی امرار معاش می‌کردند و هر عضو نقشی از پیش تعیین شده داشت، از هم پاشید. حال همه‌ی اعضای خانواده از مرد و زن و کودک باید ساعت‌های زیادی را در کارخانه‌های می‌گذراندند تا بتوانند امرار معاش کنند. این شیوه‌ی هولناک زندگی کارگران را بر آن داشت تا با تشکیل اتحادیه‌‌های کارگری در حد توان از به بردگی کشیدن خود توسط صاحبان صنایع جلوگیری کنند.

industrial reveloution

با ایجاد قوانین، دستگاه‌های نظارتی و آئین‌نامه‌های مرتبط، نیروهای کار که تا پیش‌ از این برده بودند، طبقه‌ای متوسط در جامعه تشکیل دادند که در میان آن‌ها مدیران، کارآفرینان خصوصی یا کارمندان دولت دیده می‌شد.

در کنار بهتر شدن سطح زندگی به شکلی چشم‌گیر، محیط زیست نیز تا حد زیادی تخریب شد و از بین رفت. شاید پرداختن به اثرات محیط زیستی انقلاب صنعتی نیاز به نوشته‌ای دیگر داشته باشد. کمی دیر اما دولت‌مردان، سرمایه‌گذاران، دانشمندان و … هم‌اکنون پروژه‌های صنعتی را در چارچوب «توسعه‌ی پایدار» (sustainable development) دنبال می‌کنند تا در کنار توسعه، محیط زیست را نیز حفظ کنند.

«موتور بخار» (steam engine) نوعی موتور گرمایی است که از بخار به عنوان «سیال عملیاتی» (working fluid) برای تولید کار مکانیکی استفاده می‌‌کند. پیشینه‌ی طولانی موتور بخار به دو هزار سال پیش برمی‌گردد. البته انواع باستانی این فناوری به صورت عملی قابل استفاده نبودند؛ با این حال آخرین نسخه‌هایی از موتور بخار که طی انقلاب صنعتی طراحی و تولید شد، به مهم‌ترین منبع تولید انرژی مکانیکی تبدیل گشت. توربین‌های بخار نسل جدید تقریبا نیمی از برق جهان را هر روز تولید می‌کنند.



گرچه در برخی از این سیستم‌ها از انرژی خورشیدی، انرژی هسته‌ای یا زمین‌گرمایی استفاده می‌شود، بسیاری از این‌ها در دسته‌ی «موتورهای برون‌سوز یا احتراق خارجی» (external combustion engines) طبقه‌بندی می‌گردند. چرخه ترمودینامیکی که در موتور بخار برای تولید انرژی مکانیکی طی می‌گردد، «چرخه‌ی رانکین» (Rankine cycle) نام دارد.
موتور برون‌سوز
در چنین موتوری گرما توسط یک منبع خارجی به سیال عملیاتی داده می‌شود. به همین دلیل از هر نوع سوخت یا منبعی که بتواند حرارت لازم را تولید کند، می‌توان در موتور بخار استفاده کرد. به دلیل این که سیال عملیاتی از منبع حرارت کاملا جدا است، امکان استفاده از تمام سوخت‌های تجدید‌پذیر نیز وجود دارد. این ویژگی منجر به انتشار آلودگی کمتر، نگهداری ساده‌تر و طول عمر بیشتر می‌گردد.

این مزیت در «موتورهای درون‌سوز» (internal combustion engine) وجود ندارد. در این نوع موتورها، سیال عملیاتی همان محصولات گازی احتراق است و گرمای مورد نیاز نیز از همین احتراق به دست می‌آید. موتورهای رایج بنزینی و دیزلی از این دسته هستند.
کاربرد

از اوایل قرن ۱۹ میلادی، موتور بخار کاربرد فراوانی در صنعت داشته است. در ابتدا از این فناوری به عنوان محرک «پمپ رفت و برگشتی» (reciprocating pumps) استفاده می‌شد؛ اما از سال ۱۷۸۰ با ظهور موتورهای دورانی (که حرکت رفت‌ و برگشتی را به حرکت دورانی تبدیل می‌کنند) انقلابی در ماشین‌های صنعتی رخ داد. به همین منوال از اواخر قرن ۱۹، موتور بخار به محرک اصلی در حوزه‌ی حمل‌ونقل دریایی و زمینی تبدیل شد و با گذر زمان کاربرد گسترده‌تری یافت.

بخار را می‌توان نیروی محرک انقلاب صنعتی نامید. کاربردهای اقتصادی گسترده در کارخانه‌ها و آسیاب‌ها، راه‌اندازی ایستگاه‌های پمپاژ و حمل‌ونقل گواهی بر این مدعا است. در این حوزه از موتور بخار در لوکوموتیوها، کشتی‌ها و خودروها استفاده شد. استفاده از این نوع فناوری در بخش کشاورزی منجر به افزایش سطح زمین قابل شخم زدن و کاشت گردید. جالب است بدانید از این موتور در کاربردهایی با نیاز به انرژی پایین مانند ساعت بخار نیز استفاده شده است.

حضور مراحل متعدد بین منبع گرمایی تا مرحله‌ی آخر تولید توان، منجر به کاهش ضریب تولید توان به وزن موتور در مقایسه با موتورهای درون‌سوز می‌گردد. به همین دلیل از موتور بخار به ندرت در کاربردهای حمل‌ونقل هوایی استفاده شده است. بر اساس آنچه ذکر شد، در کاربردهایی با مقیاس کوچک و متوسط، این فناوری از رقبای خود مانند موتور درون‌‌سوز و موتور الکتریکی عقب مانده است. در نتیجه بسیاری تصور می‌کنند که موتور بخار از رده خارج شده. ضمناً بهتر است بار دیگر تاکید شود نیمی از برق تولیدی جهان از بخار تولید می‌گردد. در بسیاری از صنایع از این انرژی به عنوان نیروی محرک بسیاری از تجهیزات استفاده می‌شود.

موتور بخار را می‌توان بر اساس کاربرد آن دسته‌بندی کرد.
کاربردهای ثابت و حمل و نقل
کاربردهای ثابت موتور بخار: موتورهای ثابت را می‌توان به دو دسته‌ی کوچک‌تر تقسیم کرد که به شرح زیر است.

  •     تجهیزاتی که در آن‌ها موتور به طور نامنظم متوقف می‌شود و دوباره شروع به کار می‌کند. این موتورها گاهی باید جهت خود را نیز عوض کنند. از این دست می‌توان به موتورهایی برای جمع‌آوری کابل‌های سنگین یا حتی موتور کشتی اشاره کرد.
  •     موتورهای تولید توان که به ندرت متوقف یا جهت آن‌‌ها عوض می‌شود. موتور بخاری که در نیرو‌گاه گرمایی، ایستگاه پمپ، آسیاب‌خانه یا کارخانه‌ها به این شکل مورد بهره‌برداری قرار می‌گیرد، در این گروه جای دارد.


کاربرد موتور بخار در حمل‌ و نقل: موتور بخار در بسیاری از موارد در این حوزه‌ مورد استفاده قرار گرفته است.

  •     کاربردهای دریایی: قایق بخار، کشتی بخار
  •     راه‌آهن: لوکوموتیو بخار، «لوکوموتیو بدون آتش» (Fire less locomotive)
  •     کشاورزی: تراکتور بخار
  •     جاده: واگن بخار، اتوبوس بخار، سه‌چرخه‌ی بخار، خودروی بخار
  •     ساخت‌وساز: بیل مکانیکی بخار
  •     کاربردهای نظامی: تانک بخار بدون تایر و با تایر
  •     فضا: راکت بخار


به دلیل نسبت توان به وزن بیشتر در موتور‌های درون‌سوز، این تجهیزات به مراتب زیادتر از موتور بخار در کاربردهای متحرک مورد استفاده قرار گرفته‌اند. موتور بخار هنگامی که وزن اهمیت کمتر و بازده اهمیت بیشتری داشته باشد، گزینه‌ی بهتری است.


پیشینه و تاریخچه موتور بخار
سابقه‌ی موتور بخار به اولین قرن پس از میلاد باز می‌گردد. ابتدایی‌ترین عضو این خانواده «آیولیپایل» (aeolipile) است که توسط مخترع یونانی «هرون» (Hero of Alexandria) اختراع شد. آیولیپایل نخستین وسیله‌ای است که می‌توانست انرژی بخار را به انرژی حرکتی تبدیل کند. این ابزار می‌تواند از نیروی بخار برای چرخاندن یک توپ توخالی فلزی با سرعت زیاد استفاده نماید.

 

هرون در زیر یک دیگ  بخار سربسته که پر از آب بود، آتش روشن کرد. بخار ایجاد شده از طریق دو لوله خمیده که به دو سوی توپ وصل بود منتقل می‌شد و از طریق دو روزنه بزرگ در گوشه توپ خارج می‌گردید. هرون از آیولیپایل برای بازی استفاده می‌کرد زیرا در آن زمان از اهمیت تبدیل انرژی بخار به حرکت آگاه نبود.

 

در قرن‌‌های بعد نمونه‌هایی عموما برای تبیین خواص بخار توسط دانشمندانی مانند «تقی‌الدین» (Taqi al-Din) در سال ۱۵۵۱ و «جیووانی برانکا» (Giovanni Branca) در سال ۱۶۲۹ اختراع شد.

اولین نمونه‌ی عملیاتی موتور بخار یک پمپ آب بود که توسط «توماس ساوری» (Thomas Savery) در سال ۱۶۹۸ ابداع شد با این که این پمپ توان بالایی نداشت و در مقابل انفجار‌های دیگ بخار آسیب‌پذیر بود، در برخی معادن و ایستگاه‌های پمپاژ مورد استفاده قرار می‌گرفت.

با این حال اولین موتور بخار مقرون به صرفه از نظر اقتصادی، تا سال ۱۷۱۲ ظهور نکرد. با کمک اختراعات ساوری و «دنیس پایین» (Denis Papin)، موتور اتمسفری توسط «توماس نیوکومن» (Thomas Newcomen) راه را برای انقلاب صنعتی هموار کرد.

موتور نیوکومن نسبتا بازده بالایی داشت و عموما برای پمپ کردن آب مورد استفاده قرار می‌گرفت. برای نمونه در معادن برای کشیدن آب جمع شده در چاه‌ها از این موتور استفاده می‌شد؛ کاری که تا آن زمان ممکن نبود. از این موتور بخار همچنین برای پمپ‌ کردن آب به منظور گرداندن چرخ‌های آبی در کارخانه‌هایی دور از یک منبع آب با ارتفاع بالا استفاده می‌شد.

قدم بعدی هنگامی برداشته شد که «جیمز وات» (James Watt) نوع پیشرفته‌ی موتور نیوکومن را طراحی کرد و ساخت. موتور وات به میزان ۷۵ درصد در مصرف زغال‌سنگ نسبت به نوع قبلی خود صرفه‌جویی داشت. وات موتور بخار خود را توسعه داد تا به فناوری حرکت گردان یا چرخشی مناسب برای استفاده در کارخانه‌ها تبدیل گردد. این فناوری به صنعت اجازه داد تا جایی غیر از کنار رودخانه‌ها بنا شوند و سرعت انقلاب صنعتی را افزایش داد.

 

حدود سال ۱۸۰۰، «ریچارد تریویتیک» (Richard Trevithick) موتورهایی با فشار بخار بالا طراحی کرد. این اختراع از نمونه‌های قبلی بسیار قدرتمندتر بود؛ به همین دلیل امکان داشت تا با طراحی در اندازه‌ای کوچک، در کاربردهای حوزه‌ی حمل‌ونقل مورد استفاده قرار گیرد. پیشرفت‌های پی‌درپی باعث شد تا این فناوری به تدریج کوچک‌تر، سریع‌تر و قوی‌تر شود.

موتور بخار به عنوان مهم‌ترین منبع توان تا قرن بیستم شناخته می‌شد؛ تا جایی که با طراحی موتور الکتریکی و موتور درون‌سوز، در بخش موتورهای رفت‌وبرگشتی قافیه را به رقیبان خود باخت. با این وجود هنوز توربین بخار سرآمد فناوری‌های مورد استفاده در تولید برق است.

نحوه‌ی کارکرد یک موتور بخار رفت‌وبرگشتی به زبان ساده
گرما از سوخت در حال احتراق دریافت می‌گردد. این گرما در یک دیگ بخار با فشار بالا به آب انتقال پیدا می‌کند و منجر به تولید بخار اشباع می‌شود. این بخار دمایی مساوی با آب در حال جوش دارد. این دما نیز به فشار بخار داخل دیگ وابسته است. برای فهم بهتر تصور کنید که آب در ارتفاعات بالاتر با فشار کمتر، در دمای پایین‌تری می‌جوشد.

بخار در این مرحله بازهم گرم می‌شود تا به حالت «فوق داغ» (super heat vapor) یا بخار خشک تبدیل گردد. این مرحله، انرژی سیال عملیاتی را بالا می‌برد و منجر به عملکرد بهتر موتور یا توربین می‌شود. بخار تولید شده وارد موتور می‌شود و پیستون را هل می‌دهد. حرکت پیستون نوعی از انرژی مکانیکی است که گاهی به حرکت دورانی تبدیل می‌گردد. بخار کم‌فشار و سرد استفاده شده در موتور به هوا تخلیه می‌شود. البته دانستن این نکته ضروری است که در توربین‌های مدرن این بخار مجددا میعان و به چرخه برمی‌گردد.

 

 

اجزای موتور بخار
دو جزء اصلی در این تجهیز وجود دارد: یکی دیگ بخار و دیگری بخش موتور. این دو بخش را می‌توان به صورت مجزا و با فاصله یا پیوسته طراحی کرد و ساخت.

دیگر اجزا شامل پمپ (به منظور انتقال آب به دیگ بخار)، چگالنده (با هدف میعان کردن بخار خروجی از موتور) و فوق‌ داغ کننده‌ها (افزایش دمای بخار اشباع به بخار فوق داغ) هستند. هنگامی که از زغال‌سنگ به عنوان سوخت استفاده می‌شود، یک خط دیگر برای آماده‌سازی و مصرف آن وجود دارد. این بخش به صورت کامل در اینجا توضیح داده شده است.

منبع حرارتی
حرارت مورد نیاز برای تبخیر آب را می‌‌توان از منابع مختلفی – عموما از سوزاندن مواد سوختنی – همراه با تامین هوای مورد نیاز تامین کرد. در برخی از موارد منبع حرارتی سوخت هسته‌ای یا انرژی زمین‌گرمایی است.

منبع دما پایین یا منبع سرد
در تمام انواع موتور گرمایی، مقدار زیادی از گرما بعد از رسیدن بخار به دمای پایین در خروجی توربین یا موتور به هدر می‌رود. این گرما باید از سیستم خارج شود تا منجر به بالا رفتن دمای قطعات نگردد. یکی از ساده‌ترین راه‌های ممکن خارج کردن بخار و فرستادن آن به محیط است. این روش عموما در لوکوموتیو‌های بخار مورد استفاده قرار می‌گیرد ولی منجر به کاهش بازده می‌شود. با نصب تجهیزی برای میعان بخار خروجی می‌توان بازده موتور را افزایش داد.

در سیستم توربین بخار از برج‌های خنک‌کننده استفاده می‌شود که نوعی چگالنده به حساب می‌آیند. برخی اوقات می‌توان از گرمای بخار خروجی به صورت مستقیم بهره‌برداری کرد. برای مثال در «نیروگاه‌های تولید هم‌زمان گرما و برق» (Combined Heat and Power) معروف به CHP از این انرژی برای گرمایش محیط استفاده می‌شود.

دیگ بخار
این تجهیزات مخازنی هستند که قرار است در آن‌ها آب تبخیر شود. مکانیسم‌های متعهدی جهت انتقال حرارت به آب در دیگ بخار طراحی شده است. دو تا از مهم‌ترین روش‌های این فرایند به شرح زیر است.

دیگ بخار «آب-لوله» (Water tube boiler) در این روش، آبی که قرار است بخار شود، از درون لوله‌ها عبور می‌‌کند. برای فهم بهتر از این دست می‌توان به آب‌گرم‌کن دیواری در کاربردهای خانگی اشاره کرد.
دیگ بخار «آتش-لوله» (Fire tube boiler): در این روش، آب در عمل مخزن را پر می‌کند و گازهای داغ حاصل از احتراق درون لوله‌هایی که از آب گذر داده شده‌اند، جریان پیدا می‌کنند.
هنگامی که آب به بخار تبدیل شد، در برخی از دیگ‌های بخار با دادن گرمای بیشتر، بخار فوق داغ به دست می‌آید. این کار باعث افزایش بهره‌وری می‌گردد.

دیگ بخار فایرتیوب یا لوله آتشی

 

 

واحد موتور
موتور یا توربین بخار پرفشار و با دمای بالا را دریافت می‌کند. خروجی این قسمت بخاری با فشار و دمای پایین است. بخشی از اختلاف انرژی بخار ورودی با بخار خروجی توسط این واحد به کار مکانیکی تبدیل می‌گردد.
واحد موتوری را به درستی در این بخش موتور بخار می‌نامند. البته این واحدها ممکن است با هوای فشرده یا دیگر گازها کار کنند.

انبساط ساده
در بیشتر پیستون‌های رفت و برگشتی، مسیر بخار در هر مرحله تغییر پیدا می‌کند و از یک دریچه وارد و داخل می‌گردد. یک چرخه‌ی کامل شامل یک گردش کامل میل‌لنگ و دو مرحله‌ی پیستون است. این چرخه را نیز می‌توان شامل چهار مرحله‌ی «ورود بخار» (admission)، انبساط، خروج بخار و تراکم دانست.
این چهار مرحله با باز و بسته شدن شیرهایی که به «دنده شیر» (valve gear) متصل هستند، کنترل می‌گردد.

موتورهای ترکیبی
هنگامی که بخار منبسط می‌گردد، دمای آن کاهش می‌یابد. به دلیل سرعت بالای فرایند و این‌که گرمایی با محیط مبادله نمی‌گردد، این فرایند را «انبساط بی‌دررو» (adiabatic expansion) می‌گویند. نتیجه‌ی این مسیر ورود بخار با دمای بالا و خروج با دمای پایین است. این امر باعث گرمایش و سرمایش سیلندر در هر مرحله می‌گردد و باعث کاهش بازده می‌شود.

روشی برای کاهش اندازه‌ی گرمایش و سرمایش در سال ۱۸۰۴ توسط مهندس بریتانیایی «آرتور وولف» (Arthur Woolf) با نام «موتور ترکیبی» (compound engine) معرفی شد. در این نوع موتور بخار، بخار «فشار بالا» (high pressure) یا به اختصار HP از دیگ بخار وارد و به سیلندر HP وارد می‌شود. حال در مرحله‌ی بعد این بخار بعد از دست دادن بخشی از فشار خود وارد سیلندر «فشار پایین» (lower pressure) یا LP می‌گردد.

انبساط کامل بخار اکنون در دو مرحله اتفاق می‌افتد و در نتیجه گرمای کمتری در هر مرحله از دست می‌رود. در نتیجه فاصله‌ی دمای خروج بخار و ورود آن کمتر می‌شود. این امر با کاهش میزان سرمایش و گرمایش منجر به افزایش بازده می‌گردد.

برای گرفتن میزان کار برابر از سیلندر فشار پایین با سیلندر فشار بالا، باید این سیلندر بزرگ‌تر طراحی و ساخته شود؛ چراکه بخار فشار پایین حجم بیشتری اشغال می‌کند. همچنین از آنجا که میزان نیرو برابر با میزان فشار ضرب‌در سطح محاسبه می‌گردد، برای داشتن نیروی برابر در فشار پایین، سطح باید افزایش یابد. به همین دلیل همیشه سیلندر LP از سیلندر HP بزرگ‌تر است.

در انبساط دوگانه چنانچه شرح آن رفت، بخار در دو مرحله منبسط می‌گردد. البته ممکن است آرایش‌‌های متعددی برای این کار در سیلندرها در نظر گرفته شود. برای نمونه در برخی موتور‌های بخار، دو سیلندر HP و یک سیلندر LP تعبیه شده است. بخار فشار بالا در دو مرحله در این نوع موتور منبسط می‌گردد.

موتور با انبساط چندگانه
با افزایش مراحل می‌توان بازهم بازده را افزایش داد. نتیجه یک «موتور با انبساط چندگانه» (multiple expansion engine) خواهد بود. چنین موتورهایی عموما بین سه یا چهار مرحله‌ی انبساط دارند. با کاهش فشار در هر مرحله، اندازه‌ی سیلندر افزایش می‌یابد.

این سیلندرها طوری طراحی شده‌اند تا کار مورد نیاز را به تعداد مراحل به شکل مساوی تقسیم کنند. تصویر متحرک زیر، عملکرد یک موتور سه‌گانه را نشان می‌دهد. بخار از سمت چپ به راست در حرکت است.



توسعه‌ی این موتورها در کشتی‌های بخار بسیار ضروری به نظر می‌رسید. چراکه بخار بعد از کاهش فشار بایستی به دلیل شوری آب دریا و عدم امکان استفاده میعان می‌شد و به چرخه باز می‌گشت. موتور بخاری که روی زمین کار می‌کند، امکان آزاد کردن بخار مصرف‌شده را دارد.

قبل و در طول جنگ جهانی دوم، موتور انبساطی بیشترین کاربرد را در حمل‌ونقل دریایی داشت؛ چراکه سرعت بالا خیلی مد نظر نبود. گرچه بریتانیایی‌ها توربین بخاری طراحی کردند که سرعت بسیار بالایی داشت. «HMS Dreadnought» اولین کشتی جنگی با سرعت بالا و استفاده از توربین بخار بود که به جهان معرفی شد.

موتور تک‌جریان
این طراحی برای حل مشکل «چرخه‌های ناهم‌جهت» (counter flow cycle) پیشنهاد شد که در آن‌ها با عبور بخار کم‌فشار، دیواره و قطعات داخلی سرد می‌شد. در نتیجه بخشی از گرمای بخار پرفشار خروجی صرف گرم‌ کردن مجدد این قسمت‌ها می‌گشت.

در «موتور تک‌جریان» (uni-flow engine) با اضافه کردن یک ورودی این مشکل حل می‌گردد. این ورودی هنگامی که پیستون به نیمه‌ی راه می‌رسد باز می‌شود و باعث جریان یافتن بخار تنها در یک جهت در هر نیمه می‌گردد. حال تصور کنید که همیشه بخار پرفشار از یک نقطه وارد و بخار کم‌فشار از یک نقطه خارج می‌شوند؛ همیشه دمای تمام نقاط تقریبا ثابت می‌ماند و بازده افزایش می‌یابد.



موتورهای توربینی
یک «توربین بخار» (steam turbine) شامل یک سری از دیسک‌های چرخان نصب شده روی یک شفت است که به آن‌ها «روتور» (rotors) می‌گویند. دیسک‌های نصب شده به صورت ثابت روی بدنه‌ی توربین را نیز «استاتور» (stators) می‌گویند. روی روتورها پره‌هایی با سازمان منظم کار شده است و بخار با برخورد به این پره‌ها باعث چرخش روتور می‌گردد. استاتورها نیز پره‌هایی دارند که وظیفه‌ی هدایت بخار به مرحله‌‌ی بعد را به عهده دارند.

بخار خروجی یک توربین بخار عموما وارد یک «چگالنده سطحی» (surface condenser) می‌شود که خلا نسبی تولید می‌‌کند. مراحل طراحی شده در این تجهیز با هدف تولید بیشترین کار از بخار ساخته می‌شود. نکته اینجاست که توربین‌های بخار تنها زمانی بازده‌ مناسبی دارند که سرعت بالایی داشته باشند. به همین دلیل برای کاهش سرعت در کاربردهایی مانند پره‌ی پیشران کشتی، از سیستم جعبه دنده استفاده می‌گردد.

از آنجا که توربین‌ها انرژی بخار را به حرکت مکانیکی دورانی تبدیل می‌کنند، دیگر نیاز به سیستمی برای تبدیل حرکت رفت‌و‌برگشتی به دورانی نیست. این امر منجر به کاهش نیاز به تعمیرات و استهلاک دستگاه می‌گردد. اصلی‌ترین کاربرد توربین بخار، تولید الکتریسیته است.

تمام نیروگاه‌های هسته‌ای و برخی زیردریایی‌های هسته‌ای ابتدا آب را تا دما و فشار بالا تبخیر می‌کنند. سپس این بخار برای چرخاندن توربین مورد استفاده قرار می‌گیرد. شفت توربین که به شفت ژنراتور برق جفت‌ شده است، ژنراتور را به حرکت درمی‌آورد و برق تولید می‌شود.



موتور بخار نوع جت
مهندس استرالیایی «آلن برنز» (Alan Burns) برای اولین بار موتور بخار «نوع جت» (Jet type) را اختراع کرد. این موتورهای زیرآبی از فشار بخار بالا برای مکش آب از جلو و سپس خروج پرفشار آن از عقب استفاده می‌کند. هنگامی که بخار پرفشار وارد آب و میعان می‌شود، با ایجاد یک موج منجر به خروج سریع آب از عقب می‌گردد. با هدف افزایش بازده، موتور از یک ورودی مقداری هوا نیز به داخل می‌مکد که منجر به تولید حباب‌های هوا و تغییر مکانیسم اختلاط بخار با آب می‌گردد.



برخلاف دیگر موتورهای بخار ممولی، هیچ قطعه‌ی متحرکی در این نوع تجهیز وجود ندارد و آب خروجی تنها کمی گرم‌تر از آب ورودی است. چنین موتوری را به عنوان پمپ یا همزن نیز می‌توان مورد استفاده قرار داد.

موتور بخار نوع راکت
آیولیپایل همان‌طور که شرح آن رفت از این مکانیسم برای ایجاد پیش‌رانش البته نه در مسیر مستقیم بهره می‌برد. اخیرا البته از فناوری موتور بخار «نوع راکت» (Rocket type) خیلی استفاده نمی‌شود. این فناوری به زبان ساده به این شکل است که ابتدا یک مخزن با آب داغ پرفشار پر می‌شود. در انتهای مخزن یک خروجی کنترلی با قطر خیلی کم وجود دارد. هنگامی که خروجی باز می‌شود، آب پرفشار از محزن خارج می‌گردد و با توجه به پایین بودن فشار بیرون مخزن به بخار تبدیل می‌شود. بخار خروجی تولید شده با سرعت به بیرون پرتاب و ماشین را به جلو می‌راند.

تجهیزات کنترلی
تمام انواع موتور بخار با روش‌هایی برای کنترل شرایط مجهز شده‌اند. این تجهیزات شامل «فشارسنج‌ها» (pressure gauge) برای کنترل فشار و «مشاهده‌گرهای شیشه‌ای» (sight glass) برای کنترل سطح مایع است.

 
مزایا
مزیت اصلی موتور بخار در توانایی آن بر تبدیل هرگونه منبع گرمایی یا انرژی گرمایی به کار مکانیکی است. مزیتی که موتور درون‌سوز از آن بی‌بهره است. البته چنین ویژگی‌ای در نوع متفاوتی از موتور درون‌سوز با نام «موتور استرلینگ» (Stirling engine) وجود دارد. این موتور که به آن ماشین استرلینگ هم گفته می‌شود یک موتور حرارتی است که در سال ۱۸۱۶ توسط دکتر «رابرت استرلینگ» (Robert Stirling) اختراع شد.

موتور استرلینگ بازدهی بیشتری نسبت به موتورهای بنزینی و دیزلی دارد اما امروزه این موتورها فقط در برخی کاربردهای خاص مانند زیردریایی‌ها یا ژنراتورهای کمکی در قایق‌ها (که عملکرد بی صدا مهم است) استفاده می‌شود. اگر چه موتورهای استرلینگ به تولید انبوه نرسید اما برخی اختراعات پرقدرت با این موتور کار می‌کند.

ایمنی
در فرایند استفاده از بخار با بسیاری از مخازن پرفشار روبه‌رو هستیم که انرژی پتانسیل بالایی دارند. انفجار بخار در گذشته تلفات بسیار زیادی داشته است. به همین دلیل استاندارهای متعددی در این رابطه وجود دارد. موارد زیر ممکن است از این دست باشد.

  • بالا رفتن فشار داخل دیگ بخار بیش از حد قابل تحمل
  • کم شدن آب داخل دیگ و در نتیجه سوختن دیواره
  • خروج بخار از لوله‌ها به علت نشتی و ایجاد سوختگی در کارکنان


بازده
بازده یک موتور بخار را می‌توان از تقسیم مقدار کار مفید مکانیکی تولید شده به میزان کل انرژی حرارتی مصرفی محاسبه کرد. البته هیچ موتوری نمی‌تواند بازده‌ای بیشتر از «چرخه‌ی کارنو» (Carnot cycle) داشته باشد. این چرخه یک چرخه‌ی ترمودینامیکی بازگشت‌پذیر است که توسط «سعدی کارنو» (Saadi Carnot) در ۱۸۲۴ معرفی شد. او در این سال با انتشار مقاله‌ای این مفهوم را به شکل زیر توضیح داد.

بازده تمام ماشین‌های بازگشت‌پذیری که بین دماهای یکسانی کار می‌کنند با هم برابر است و بازده هیچ ماشین بازگشت‌ناپذیری، که بین همان دو دما کار می‌کند، نمی‌تواند بیشتر از این باشد.

در این فرایند گرما از یک منبع دما بالا به یک منبع دما پایین منتقل می‌شود و بازده آن به اختلاف درجه حرارت این دو منبع بستگی دارد. برای به دست آوردن بیشترین بازده، بهتر است تا حد امکان دمای بخار تولیدی بالا و دمای بخار خروجی از موتور پایین باشد.

در عمل در صورتی که موتور بخار، بخار را به اتمسفر تخلیه کند تنها بازدهی بین یک تا ۱۰ درصد خواهد داشت. جالب است تنها با اضافه کردن یک چگالنده و روش انبساط چندگانه، بازده به ۲۵ درصد می‌رسد. یک نیروگاه برق با مصرف بخار بازدهی بین ۲۰ تا ۴۰ درصد دارد. البته با استفاده از گرمایی که معمولا به هدر میٰ‌رود برای گرمایش منازل و ساختمان‌ها می‌توان تا ۹۰ درصد از انرژی مصرفی را مورد بهره‌برداری قرار داد.

منبع : سایت آموزشی فرادرس

 

مولف: novinbokhar
دوشنبه, 19 آذر 1397 ساعت:09:30:28

نظرات

شرح کوتاه

تکامل انواع دیگ بخار و موتور بخار از زمان انقلاب صنعتی تا کنون

فایل ها

پر بازدیدترین ها

Web Analytics